Quantum Statistical Mechanics with Nested Sampling

Dr Robert Baldock and Professor Mike Payne

In the path integral formulation, the quantum partition function for a single dimension is expressed asymptotically as

\[Z(\beta) = \lim_{P \to \infty} Z_P(\beta) \]

where

\[Z_P(\beta) = \left(\frac{mP}{2\pi \beta \hbar^2} \right)^{\frac{P}{2}} \int dx_1 \ldots dx_P \times \exp \left(-\beta \sum_{s=1}^{P} \left[\frac{mP}{2\beta \hbar^2} (x_{s+1} - x_s)^2 + P^{-1} V(x_s) \right] \right). \] (1)

The partition function \(Z_P(\beta) \) corresponds to the classical partition function for \(P \) classical systems which do not interact except that they are connected by springs, with spring constant proportional to \(T^2 \). Although much impressive work has been done to develop methods for sampling the configurational probability distribution for a system of \(P \) such classical systems, at present there is no generally applicable methodology for calculating \(Z_P(\beta) \) for atomistic systems as an explicit function of \(\beta \). The aim of this project is to develop such a methodology for \(P \) copies of \(N \) particles in 3 dimensions, in order to allow the direct application of the path integral formulation of quantum statistical mechanics to real systems.

The partition function \(Z_P(\beta) \) may be written as an integral over the joint density of states

\[Z_P(\beta) = \left(\frac{mP}{2\pi \beta \hbar^2} \right)^{\frac{P}{2}} \int dE_1 dE_2 \frac{g(E_1, E_2|P)}{\beta} \exp \left(-\left[\frac{E_1}{\beta} + \beta E_2 \right] \right) \]

where

\[E_1 = \frac{mP}{2\hbar^2} \sum_{s=1}^{P} (x_{s+1} - x_s)^2, \quad E_2 = P^{-1} \sum_{s=1}^{P} V(x_s) \]
and

\[g(E_1, E_2|P) = \int dx_1 \ldots dx_P \delta (E_1(x) - E_1) \delta (E_2(x) - E_2). \]

It has recently been shown that Nested Sampling can be used to calculate the configurational density of states for a single classical system. This project will build on this advance to calculate the joint density of states \(g(E_1, E_2|P) \) for a system of \(P \) classical systems by retrospectively sampling from the output of a single classical nested sampling calculation, thereby bypassing the need for further expensive configuration space sampling for \(P > 1 \). This will enable the efficient calculation of quantum partition functions as explicit functions of \(\beta \), and allow the discovery of quantum phases and quantum phase transitions from first principles.